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ABSTRACT 
The purpose of the study was octreotide therapy in acromegaly is associated with an increased prevalence of gall 

stones, which may be the result of inhibition of gall bladder motility. Gall stone prevalence in untreated 

acromegalic patients relative to the general population is unknown, however and the presence of gall stones and 

gall bladder motility in these patients and in acromegalic patients receiving octreotide was therefore examined. 

Gall bladder emptying in untreated acromegalic subjects is impaired. Octreotide further increases post prandial 

residual gall bladder volume and this may be a factor in the increased gall stone prevalence seen in these 

patients.  

The results of octreotide therapy in acromegalic and the normal controls were compared using the marginal 

distribution of a stretched Brownian motion 𝐵(𝑡𝛼) as 

𝑓∗ 𝑥; 𝑡 =
1

 4𝜋𝑡𝛼
𝑒𝑥𝑝  

−𝑥2

4𝑡𝛼
 

 

I. INTRODUCTION 
The excessive and autonomous secretion of 

growth hormone in acromegaly may be reduced by 

the administration of somatostatin. The therapeutic 

value of somatostatin, however is limited by its very 

short plasma half life of 3 to 4 minutes. Octreotide, a 

long acting somatostatin analogue is now being used 

increasingly in the management of acromegalic 

patients. Patients with somatostatin producing 

tumours are known to have a high incidence of 

gallstone formation, possibly caused in part by 

impaired gallbladder emptying consequent upon 

inhibition of cholecystokinin and motilin, allowing a 

stasis of bile and thence crystal and subsequently 

stone formation. An increased prevalence of gall 

stones in acromegalic patients being treated with 

octreotide has been reported by several groups and it 

has been postulated that this may also be the result of 

impaired gall bladder contraction [1]. 

The master equation approach to model 

anomalous diffusion is considered. Anomalous 

diffusion in complex media can be described as the 

result of superposition mechanism reflecting in 

homogeneity and non stationary properties of the 

medium. For instance, when this superposition is 

applied to the time fractional diffusion process, the 

resulting master equation emerges to be the 

governing equation of the Erdelyi-Kober fractional  

 

 

diffusion, which describes the evolution of the 

marginal distribution of the Brownian motion, as   

𝑓∗ 𝑥; 𝑡 =
1

 4𝜋𝑡𝛼
𝑒𝑥𝑝  

−𝑥2

4𝑡𝛼
  

This motion is a parametric class of stochastic 

processes that provides models for both fast and slow 

anomalous diffusion: it is made up of self similar 

processes with stationary increments and depends on 

two real parameters. The class includes the fractional 

Brownian motion, the time fractional diffusion 

stochastic processes, and the standard Brownian 

motion. In this frame work, the M-Wright function 

emerges as a natural generalization of the Gaussian 

distribution, recovering the same key role of the 

Gaussian density for the standard and the fractional 

Brownian motion. 

 

II. NOTATIONS 
        𝐷1(𝑥)          -        Drift Coefficient 

        𝐷2(𝑥)          -        Diffusion Coefficient 

        𝐹(𝑥)            -        External Force Field 

        𝐾(𝑥, 𝑡)         -        Integral Operator 

        𝐿𝜃
−𝜃 𝜉          -        Stable Density 

       𝑃(𝐷, 𝑥, 𝑡)      -        Spectrum of Values of 𝐷 

       𝐵𝐻(𝑡)            -        Brownian Motion 

       𝐶𝛼                  -         Dimension 

        𝑡                   -        Assuming Time 

       𝑥                   -         Scale Parameter 
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III. THE MASTER EQUATION 

APPROACH 
Statistical description of diffusive processes can 

be performed both at the microscopic and at the 

macroscopic levels. The microscopic level 

description concerns the simulation of the particle 

trajectories by opportune stochastic models. Instead, 

the macroscopic level description requires the 

derivation of the evolution equation of the probability 

density function of the particle displacement (the 

Master Equation) which is, indeed, connected to the 

microscopic trajectories. The problem of microscopic 

and macroscopic descriptions of physical systems 

and their connection is addressed and discussed in a 

number of cases. 

The most common examples of this microscopic 

to macroscopic dualism are the Brownian motion 

process together with the standard diffusion equation 

and the Ornstein Uhlenbeck stochastic process with 

the Fokker Planck equation [2] & [8]. But the same 

coupling occurs for several applications of the 

random walk method at the microscopic level and the 

resulting macroscopic description provided by the 

Master Equation for the probability density function 

[10]. 

In many diffusive phenomena, the classical flux 

gradient relationship does not hold. In these cases 

anomalous diffusion arises because of the presence of 

nonlocal and memory effects. In particular, the 

variance of the spreading particles does no longer 

grow linearly in time. Anomalous diffusion is 

referred to as fast diffusion, when the variance grows 

according to a power law with exponent greater than 

1, and is referred to as slow diffusion; when that 

exponent is lower than 1. It is well known that a 

useful mathematical tool for the macroscopic 

investigation and description of anomalous diffusion 

is based on Fractional Calculus. 

A fractional differential approach has been 

successfully used for modelling purposes in several 

different disciplines, for example, statistical physics, 

neuroscience, economy and finance, control theory, 

and combustion science. Further applications of the 

fractional approach are recently introduced and 

discussed by [5]. 

Moreover, under a physical point of view, when 

there is no separation of time scale between the 

microscopic and the macroscopic level of the 

process, the randomness of the microscopic level is 

transmitted to the macroscopic level and the correct 

description of the macroscopic dynamics has to be in 

terms of the Fractional Calculus for the space 

variable [4]. On the other side, fractional integro / 

differential equations in the time variable are related 

to phenomena with fractal properties [9]. 

In this paper, the correspondence microscopic to 

macroscopic for anomalous diffusion is considered in 

the framework of the Fractional Calculus. 

Making use of the grey noise theory, introduced 

a class of self similar stochastic processes termed 

grey Brownian motion. This class provides stochastic 

models for the slow anomalous diffusion and the 

corresponding Master Equation turns out to be the 

time fractional diffusion equation. This class of self 

similar processes has been extended to include 

stochastic models for both slow and fast anomalous 

diffusion and it is named generalized grey Brownian 

motion. Moreover, in a macroscopic framework, this 

larger class of self similar stochastic processes is 

characterized by a Master Equation that is a 

fractional differential equation in the Erdelyi Kober 

sense. For this reason, the resulting diffusion process 

is named Erdelyi Kober fractional diffusion [7]. 

 

IV. THE MASTER EQUATION AND 

ITS GENERALIZATION 
The equation governing the evolution in time of 

the probability density function (pdf) of particle 

displacement 𝑃(𝑥; 𝑡), where 𝑥 ∈ 𝑅 is the location and 

𝑡 ∈ 𝑅0
+ the observation instant, is named Master 

Equation (ME). The time 𝑡 has to be interpreted as a 

parameter such that the normalization condition 

 𝑃 𝑥; 𝑡 𝑑𝑥 = 1 holds for any 𝑡. In this respect, the 

Master Equation approach describes the system under 

consideration at the macroscopic level because it is 

referred to as an ensemble of trajectories rather than a 

single trajectory. 

The most simple and more famous Master 

Equation is the parabolic diffusion equation which 

describes the normal diffusion. Normal diffusion, or 

Gaussian diffusion, is referred to as a Markovian 

stochastic process whose probability density function 

satisfies the Cauchy problem: 
𝜕𝑃(𝑥;𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑃(𝑥;𝑡)

𝜕𝑥2 ,    𝑃 𝑥; 0 = 𝑃0(𝑥)                    (1) 

 where 𝐷 > 0 is called diffusion coefficient 

and has physical dimension [𝐷] = 𝐿2𝑇−1. The 

fundamental solution of (1), also named Green 

function, corresponds to the case with initial 

condition 𝑃 𝑥; 0 = 𝑃0 𝑥 = 𝛿(𝑥) and turns out to 

be the Gaussian density: 

𝑓 𝑥; 𝑡 =
1

 4𝜋𝐷𝑡
𝑒𝑥𝑝  −

𝑥2

4𝐷𝑡
                                     (2) 

In this case, the distribution variance grows 

linearly in time, that is,  𝑥2 =  𝑥2+∞

−∞
𝑓 𝑥; 𝑡 𝑑𝑥 =

2𝐷𝑡. The Green function represents the propagator 

that allows to express a general solution through a 

convolution integral involving the initial condition 

𝑃 𝑥; 0 = 𝑃0(𝑥), that is, 

              𝑃 𝑥; 𝑡 =  𝑓(𝜉; 𝑡)𝑃0 𝑥 − 𝜉 𝑑𝜉
+∞

−∞
  

Diffusion equation (1) is a special case of the Fokker 

Planck equation [8] 

𝜕𝑃

𝜕𝑡
=  −

𝜕

𝜕𝑥
𝐷1 𝑥 +

𝜕2

𝜕𝑥 2 𝐷2 𝑥  𝑃 𝑥; 𝑡                   (3) 

where coefficients 𝐷1 𝑥  and 𝐷2 𝑥 > 0 are called 
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drift and diffusion coefficients, respectively. The 

Fokker Planck equation, also known as Kolmogorov 

forward equation, emerges naturally in the context of 

Markovian stochastic diffusion processes and follows 

from the more general Chapman Kolmogorov 

equation [2], which also describes pure jump 

processes.  

A non Markovian generalization can be obtained 

by introducing memory effects, which means, from a 

mathematical point of view, that the evolution 

operator on the right hand side of (3) depends also on 

time, that is, 

           
𝜕𝑃

𝜕𝑡
=   

𝜕

𝜕𝑥
𝐷1 𝑥, 𝑡 − 𝜏 +

𝜕2

𝜕𝑥 2 𝐷2 𝑥, 𝑡 − 𝜏  
𝑡

0
                                                                   

𝑃 𝑥; 𝜏 𝑑𝜏     
A straight forward non Markovian generalization 

is obtained, for example, by describing a phase space 

process (𝑣, 𝑥), where 𝑣 stands for the particle 

velocity, as in the Kramers equation for the motion of 

particles with mass 𝑚 in an external force field 𝐹(𝑥), 

that is, 
𝜕𝑃

𝜕𝑡
=  −

𝜕

𝜕𝑥
𝑣 +

𝜕

𝜕𝑣
 𝑣 −

𝐹(𝑥)

𝑚
 +

𝜕2

𝜕𝑣2 𝑃 𝑣, 𝑥; 𝑡         (4) 

In fact, due to the temporal correlation of particle 

velocity, eliminating the velocity variable in (4) gives 

a non Markovian generalized ME of the following 

form [8]: 
𝜕𝑃

𝜕𝑡
=  𝐾 𝑥, 𝑡 − 𝜏 

𝜕2

𝜕𝑥 2 𝑃 𝑥; 𝜏 𝑑𝜏
𝑡

0
                           (5) 

where the memory kernel 𝐾(𝑥, 𝑡) may be an integral 

operator or contain differential operators with respect 

to 𝑥, or some other linear operator. 

 If the memory kernel 𝐾(𝑥, 𝑡) were the 

Gelfand Shilov function 

     𝐾 𝑡 =
𝑡+
−𝜇−1

Ґ(−𝜇)
,    0 < 𝜇 < 1  

where the suffix + is just denoting that the function is 

vanishing for 𝑡 < 0, then ME (5) would be 

      
𝜕𝑃

𝜕𝑡
=  

(𝑡−𝜏)−𝜇−1

Ґ(−𝜇)

𝜕2

𝜕𝑥 2 𝑃 𝑥; 𝜏 𝑑𝜏 = 𝐷𝑡
𝜇 𝜕2𝑃

𝜕𝑥 2

𝑡+

0−
   

that is, the time fractional diffusion equation [5]. The 

operator 𝐷𝑡
𝜇

 is the Riemann Liouville fractional 

differential operator of order 𝜇 in its formal definition 

according to [3] and it is obtained by using the 

representation of the generalized derivative of order 

𝑛 of the Dirac delta distribution: 𝛿(𝑛) 𝑡 =
𝑡+
−𝑛−1 Ґ(−𝑛)  with proper interpretation of the 

quotient as a limit if 𝑡 = 0. It is here reminded that, 

for a sufficiently well behaved function 𝜑(𝑡), the 

regularized Riemann Liouville fractional derivative 

of non integer order 𝜇 ∈  𝑛 − 1, 𝑛  is 

        𝐷𝑡
𝜇
𝜑 𝑡 =

𝑑𝑛

𝑑𝑡 𝑛
 

1

Ґ(𝑛−𝜇)
 

𝜑 𝜏 𝑑𝜏

 𝑡−𝜏 𝜇 +1−𝑛

𝑡

0
   

For any 𝜇 = 𝑛 non negative integer, it is recovered 

the standard derivative 

                     𝐷𝑡
𝜇
𝜑 𝑡 =

𝑑𝑛

𝑑𝑡 𝑛
𝜑 𝑡   

Now consider a Physical Mechanism for Time 

Stretching Generalization, It is well known that the 

“Stretched” exponential 𝑒𝑥𝑝 −𝑡𝜃  with 𝑡 > 0 and 

0 < 𝜃 < 1, being a completely monotone function, 

can be written as a linear superposition of elementary 

exponential functions with different time scales 𝑇. 

This follow directly from the well known formula of 

the Laplace transform of the unilateral extreme stable 

density 𝐿𝜃
−𝜃 𝜉  [6], that is, 

       𝑒−𝑡𝜉
∞

0
𝐿𝜃
−𝜃 𝜉 𝑑𝜉 = 𝑒−𝑡

𝜃
, 𝑡 > 0, 0 < 𝜃 < 1  

Where 

  𝐿𝜃
−𝜃 𝜉 =

1

𝜋
 

 −1 𝑛−1

𝑛!

∞
𝑛=1 Ґ 1 + 𝑛𝜃 sin(𝑛𝜋𝜃)𝜉−𝜃𝑛−1   

Putting 𝜉 = 1 𝑇 , it follows that 

 𝑒−𝑡 𝑇 𝐿𝜃
−𝜃  

1

𝑇
 

∞

0

𝑑𝑇

𝑇2 = 𝑒−𝑡
𝜃
,𝑡 > 0,0 < 𝜃 < 1      (6) 

and 𝑇−2𝐿𝜃
−𝜃 1 𝑇   is the spectrum of time scales 𝑇. 

In the framework of diffusion processes, the 

same superposition mechanism can be considered for 

the particle probability density function. In fact, 

anomalous diffusion that emerges in complex media 

can be interpreted as the resulting global effect of 

particles that along their trajectories have 

experienced a change in the values of one or more 

characteristic properties of the crossed medium, as, 

for instance, different values of the diffusion 

coefficient, that is, particles diffusing in a medium 

that is disorderly layered. 

This mechanism can explain, for example, the 

origin of a time dependent diffusion coefficient. 

Consider, for instance, the case of a classical 

Gaussian diffusion (1) where different, but time 

independent, diffusion coefficients are experienced 

by the particles. In fact, let 𝜌(𝐷, 𝑥, 𝑡) be the spectrum 

of the values of 𝐷 concerning an ensemble of 

Gaussian densities (2) which are solutions of (1), that 

is, 

𝑓 𝑥; 𝑡, 𝐷 =
1

 4𝜋𝐷𝑡
𝑒𝑥𝑝  −

𝑥2

4𝐷𝑡
                                (7) 

where the dependence on the diffusion coefficient 𝐷 

is highlighted in the notation, then, taking care about 

physical dimensions, in analogy with (6): 

  𝑓 𝑥; 𝑡, 𝐷 𝜌 𝐷, 𝑥, 𝑡 𝑑𝐷 = 

                                     
1

 4𝜋𝐶𝛼
1−𝛼 2 

𝑡𝛼
𝑒𝑥𝑝  −

𝑥2

4𝐶𝛼
1−𝛼 2 

𝑡𝛼
   

                                    = 𝑓  𝑥;
𝐶𝛼

1−𝛼 2 
𝑡𝛼

𝐷0
, 𝐷0            (8)                                             

                                    = 𝑓∗ 𝑥; 𝑡   
where 0 < 𝛼 < 2, 𝐷0 is a reference diffusion 

coefficient according to notation adopted in (7) and 

𝜌 𝐷, 𝑥, 𝑡 =
𝑥2−4 𝛼 𝑡3 2−𝛼 2  

 4𝐶𝛼  
1−2 𝛼 𝐶𝛼

 1−𝛼 2  2 
𝐷3 2 

𝐿𝛼 2 
−𝛼 2  

𝑥2−4 𝛼 𝑡

 4𝐶𝛼  
1−2 𝛼 𝐷

   

Hence, the superposition mechanism corresponds to a 

“Time Stretching” in the Gaussian distribution of the 

form 𝑡 → 𝐶𝛼
1−𝛼 2 𝑡𝛼 𝐷0  and the additional parameter 

𝐶𝛼  has dimension: where   𝐶𝛼  =  𝐿2𝑇−𝛼  1  1−𝛼 2   . 

From now on, in order to lighten the notation, it is set 

that 𝐷0 = 1 and 𝐶𝛼 = 1. 

 Note that the Gaussian probability density 

function in (8), that now reads 
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             𝑓∗ 𝑥; 𝑡 =
1

 4𝜋𝑡𝛼
𝑒𝑥𝑝  −

𝑥2

4𝑡𝛼
                    (9)                                          

can be seen as the marginal distribution of a 

“Stretched” Brownian motion 𝐵(𝑡𝛼). Such a process 

is actually a stochastic Markovian diffusion process 

and it is easy to understand that the “Anomalous” 

behavior of the variance comes from the power like 

time stretching. However, the Brownian motion 

stationarity of the increments is lost due to just the 

nonlinear time scaling. One can preserve the 

stationarity on the condition to drop the Markovian 

property. For instance, the probability density 

function given in (9) is also the marginal density 

function of a fractional Brownian motion 𝐵𝐻 𝑡  of 

order 𝐻 = 𝛼/2. Such a process is Gaussian, self 

similar, and with stationary increments. 

 

V. EXAMPLE 
Fifty one patients with acromegaly were 

studied. The clinical diagnosis of acromegaly was 

confirmed by a 75𝑔 glucose tolerance test during 

which circulating growth hormone failed to fall 

below 2𝑚𝑢/𝐼. The average basal serum growth 

hormone obtained in each patient from a five point 

day curve performed on samples drawn through an 

indwelling venous cannula over 12 hours ranged 

from 5 to 1135𝑚𝑢/𝐼, and no sample was < 2𝑚𝑢/𝐼. 
Nine of the acromegalic patients had gall bladder 

motility studies performed before and after treatment 

with octreotide, and the effect on gall bladder fasting 

and residual volume is shown in figure (1). Fasting 

volume increased with octreotide in seven of the nine 

patients. This was not statistically significant. 

Residual volume however increased in all but one of 

the patients [1]. 

Figure (1): Gall Bladder fasting and residual 

volumes in acromegalic patients before and after 

treatment with octreotide. 

 

 

Figure (2): Gall Bladder fasting volume in 

acromegalic patients before and after treatment with 

octreotide. 

 
Fasting 

 

 

Figure (3): Gall Bladder residual volume in 

acromegalic patients before and after treatment with 

octreotide. 

 
Residual 
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VI. CONCLUSION 
The mathematical model also stresses the same 

effect of acromegalic patients and non acromegalic 

patient’s conditions, which are beautifully fitted with 

the marginal distribution of a stretched Brownian 

motion. The results of these analysis shows that 

octreotide therapy is associated with an increased 

prevalence of gall stones and that duration of 

treatment seems to be important. Impaired gall 

bladder emptying is associated with this increased 

risk. It also shows that acromegalic patients not 

treated with octreotide have abnormal gall bladder 

which empty poorly. The medical report {Figure (1)} 

is beautifully fitted with the mathematical models 

{Figure (2) and Figure (3)}; (𝑖. 𝑒) the results coincide 

with the mathematical and medical report. 
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